FTheoryTools: A computational tool for analysis of singular elliptic fibrations

Andrew P. Turner University of Pennsylvania

ICMS 2024

July 25, 2024

In collaboration with: Martin Bies Mikelis Emils Mikelsons Matthias Zach, Anne Frühbis-Krüger OSCAR collaboration

Introduction

F-theory is a powerful tool for constructing and analyzing models in string theory, but it involves many difficult/tedious computations:

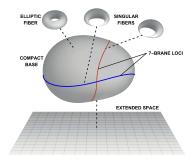
Introduction

F-theory is a powerful tool for constructing and analyzing models in string theory, but it involves many difficult/tedious computations:

- Nonabelian gauge algebras, matter curves, Yukawa points: **Crepant** resolution, intersection theory
- $\bullet \ U(1)$ gauge factors and gauge group global structure: Mordell–Weil group
- Discrete gauge factors: Weil-Châtelet group
- Chiral matter: G₄ flux (middle cohomology)
- Vector-like matter: Deligne cohomology, root bundles

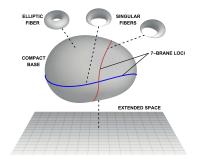
Introduction

F-theory is a powerful tool for constructing and analyzing models in string theory, but it involves many difficult/tedious computations:


- Nonabelian gauge algebras, matter curves, Yukawa points: **Crepant** resolution, intersection theory
- $\bullet \ U(1)$ gauge factors and gauge group global structure: Mordell–Weil group
- Discrete gauge factors: Weil-Châtelet group
- Chiral matter: G_4 flux (middle cohomology)
- Vector-like matter: Deligne cohomology, root bundles

This complexity obstructs progress:

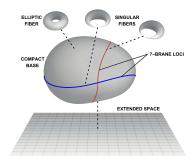
- Imposes a large computational overhead for analyzing models
- Makes it harder for newcomers to enter the field
- Results in duplicated effort


F-theory overview

- Singular elliptically fibered Calabi–Yau *n*-fold *Y*:
 - ► Torus over each point in base B, π: Y → B
 - Has a section, σ: B → Y s.t. π ∘ σ = Id_B
 - ► Complex structure *τ* encodes Type IIB axiodilaton

F-theory overview

- Singular elliptically fibered Calabi–Yau *n*-fold *Y*:
 - ► Torus over each point in base $B, \pi: Y \to B$
 - Has a section, σ: B → Y s.t. π ∘ σ = Id_B
 - ► Complex structure *τ* encodes Type IIB axiodilaton


• Described by Weierstrass model: hypersurface

$$y^2 = x^3 + fxz^4 + gz^6$$

in $\mathbb{P}^{2,3,1}_{[x:y:z]}$ projective bundle, where f,g are sections of $-4K_B,-6K_B$

F-theory overview

- Singular elliptically fibered Calabi–Yau *n*-fold *Y*:
 - Torus over each point in base $B, \pi: Y \to B$
 - Has a section, σ: B → Y s.t. π ∘ σ = Id_B
 - ► Complex structure *τ* encodes Type IIB axiodilaton

• Described by Weierstrass model: hypersurface

$$y^2 = x^3 + fxz^4 + gz^6$$

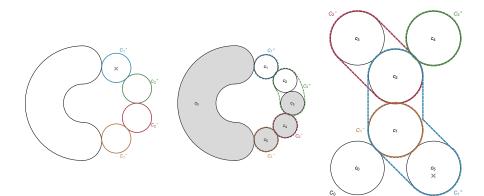
in $\mathbb{P}^{2,3,1}_{[x:y:z]}$ projective bundle, where f,g are sections of $-4K_B, -6K_B$ • Dictionary:

- ▶ Codim.-one singularities (7-branes) \longleftrightarrow nonabelian gauge algebras
- Codim.-two singularities \longrightarrow massless matter
- ▶ Codim.-three singularities ↔ Yukawa couplings
- ▶ Additional (nontorsional) rational sections $\longrightarrow \mathfrak{u}(1)$ gauge algebras
- \blacktriangleright Torsional rational sections \longrightarrow global gauge group structure

Sing. Ty	$pe \operatorname{ord}(f)$	$\operatorname{ord}(g)$	$\operatorname{ord}(\Delta)$	Dynkin	g
I_0	≥ 0	≥ 0	0	—	_
I_1	0	0	1	—	—
II	≥ 1	1	2	—	—
III	1	≥ 2	3	A_1	$\mathfrak{su}(2)$
IV	≥ 2	2	4	A_2	$\mathfrak{sp}(1)$ $\mathfrak{su}(3)$
I_N	0	0	N	A_{N-1}	$\mathfrak{sp}\left(\lfloor rac{N}{2} ight)$ $\mathfrak{su}(N)$
I_0^*	≥ 2	≥ 3	6	D_4	\mathfrak{g}_2 $\mathfrak{so}(7)$ $\mathfrak{so}(8)$
I_N^*	2	3	N+6	D_{N+4}	$\mathfrak{so}(2N+7)$ $\mathfrak{so}(2N+8)$
IV^*	≥ 3	4	8	E_6	$\mathfrak{f}_4 \mathfrak{e}_6$
III^*	3	≥ 5	9	E_7	\mathfrak{e}_7
II^*	≥ 4	5	10	E_8	\mathfrak{e}_8

Kodaira and Refined Tate Fiber Types

• A result of Hironaka (1964) tells us that there is always a strong desingularization for a singular variety over a field of characteristic 0


- A result of Hironaka (1964) tells us that there is always a strong desingularization for a singular variety over a field of characteristic 0
- However, we are interested in **crepant** resolutions, which are those that do not change the first Chern class

- A result of Hironaka (1964) tells us that there is always a strong desingularization for a singular variety over a field of characteristic 0
- However, we are interested in **crepant** resolutions, which are those that do not change the first Chern class
- There is no known algorithm to crepantly resolve an arbitrary singular variety

- A result of Hironaka (1964) tells us that there is always a strong desingularization for a singular variety over a field of characteristic 0
- However, we are interested in **crepant** resolutions, which are those that do not change the first Chern class
- There is no known algorithm to crepantly resolve an arbitrary singular variety
- Typically, we resolve from low to high codimension

- A result of Hironaka (1964) tells us that there is always a strong desingularization for a singular variety over a field of characteristic 0
- However, we are interested in **crepant** resolutions, which are those that do not change the first Chern class
- There is no known algorithm to crepantly resolve an arbitrary singular variety
- Typically, we resolve from low to high codimension
- Can encounter Q-factorial terminal singularities, which *cannot be crepantly resolved*

Fiber Types

• FTheoryTools is an ongoing project to create a unified collection of tools for F-theory model analysis

- FTheoryTools is an ongoing project to create a unified collection of tools for F-theory model analysis
- Being developed as a component of OSCAR

- FTheoryTools is an ongoing project to create a unified collection of tools for F-theory model analysis
- Being developed as a component of OSCAR
- Current features:
 - F-theory models over specified or arbitrary bases
 - Multiple model presentations: Weierstrass, Tate, arbitrary hypersurface
 - Model tuning (specialization)
 - (Crepant) Resolution (toric to schemes)
 - Intersection theory and fiber analysis
 - Large database of F-theory models, compliant with MaRDI

- FTheoryTools is an ongoing project to create a unified collection of tools for F-theory model analysis
- Being developed as a component of OSCAR
- Current features:
 - F-theory models over specified or arbitrary bases
 - Multiple model presentations: Weierstrass, Tate, arbitrary hypersurface
 - Model tuning (specialization)
 - (Crepant) Resolution (toric to schemes)
 - Intersection theory and fiber analysis
 - Large database of F-theory models, compliant with MaRDI
- Documentation: https://docs.oscarsystem.org/stable/Experimental/FTheoryTools/introduction/
- Tutorial: https://www.oscar-system.org/tutorials/FTheoryTools/

OSCAR: Open Source Computer Algebra Research

OSCAR is a computer algebra system that brings together powerful techniques from algebra, geometry, and number theory

• Written in Julia (fast!)

OSCAR: Open Source Computer Algebra Research

OSCAR is a computer algebra system that brings together powerful techniques from algebra, geometry, and number theory

- Written in Julia (fast!)
- Combines and extends:
 - GAP (discrete algebra)
 - Singular (algebraic geometry)
 - Polymake (polyhedral geometry)
 - Antic (number theory)

OSCAR: Open Source Computer Algebra Research

OSCAR is a computer algebra system that brings together powerful techniques from algebra, geometry, and number theory

- Written in Julia (fast!)
- Combines and extends:
 - GAP (discrete algebra)
 - Singular (algebraic geometry)
 - Polymake (polyhedral geometry)
 - Antic (number theory)
- Website: https://www.oscar-system.org

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

```
julia> singular_loci(t)
2-element Vector{Tuple{MPolyIdeal{<:MPolyRingElem}, Tuple{Int64, Int64, Int64},
        String}}:
  (Ideal with 1 generator, (0, 0, 1), "I_1")
  (Ideal (w), (0, 0, 5), "Split I_5")</pre>
```

$$y^{2} + a_{1,0}xyz + a_{3,2}w^{2}yz^{2} = x^{3} + a_{2,1}wx^{2}z^{2} + a_{4,3}w^{3}xz^{4}$$

Literature models

FTheoryTools includes a database of (families of) models from the F-theory literature:

FTheoryTools includes a database of (families of) models from the F-theory literature:

• Search by arXiv number, DOI, equation number, ...

FTheoryTools includes a database of (families of) models from the F-theory literature:

- Search by arXiv number, DOI, equation number,
- Contains as much known data as possible
 - ► All presentations (Weierstrass, global Tate, hypersurface, ...)
 - Known generating sections
 - Known resolutions
 - Physical data
 - ▶

julia> t = literature_model(arxiv_id = "1109.3454", equation = "3.1")
Global Tate model over a not fully specified base -- SU(5)xU(1) restricted Tate
 model based on arXiv paper 1109.3454 Eq. (3.1)

julia> t = literature_model(arxiv_id = "1109.3454", equation = "3.1")
Global Tate model over a not fully specified base -- SU(5)xU(1) restricted Tate
 model based on arXiv paper 1109.3454 Eq. (3.1)

julia> resolve(t, 1)
Partially resolved global Tate model over a not fully specified base -SU(5)xU(1) restricted Tate model based on arXiv paper 1109.3454 Eq. (3.1)

Conclusions

FTheoryTools: in-development computational tool to automate and speed up calculations in F-theory

Conclusions

FTheoryTools: in-development computational tool to automate and speed up calculations in F-theory

- Brings together many mathematical tools to analyze F-theory models
- Provides a (growing) database of models from the literature

Conclusions

FTheoryTools: in-development computational tool to automate and speed up calculations in F-theory

- Brings together many mathematical tools to analyze F-theory models
- Provides a (growing) database of models from the literature

To-Do:

- Fluxes (imminent!)
- Mordell-Weil, Weil-Châtelet
- Inclusion of root bundle code RootCounter
- CICYs and more general schemes
- Algorithmic crepant desingularization?
- Weighted blowups?
- Add many more literature models

• . . .