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General notation.

Let X be a smooth projective toric variety over C, e.g. XP “ P2, P “

‚ DpX q :“ DbpCohpX qq bounded derived category of X .

‚ K pX q :“ K0pCohpX qq Grothendieck group of X is of finite rank
N :“ rk K pX q ă 8.

‚ E1, . . . ,En exceptional sequence, Ei P ObpDpX qq.



Definition.

A sequence L1, . . . ,Ln of line bundles on X is exceptional (ES) iff

Li ´ Lj P ImmpX q “ tL P PicpX q | H‚pX ,Lq “ 0u for all i ă j ,

where ImmpX q is the immaculate locus of X .

Example.
PicpPnq – Z: ImmpPnq “ t´n, . . . ,´1u ùñ

Opℓq,Opℓ ` 1q, . . . ,Opℓ ` nq is an ES.



Definition.

An exceptional sequence L1, . . . ,Ln on X is
‚ maximal (MES) iff n “ rk K pX q.

‚ full (FES) iff DpX q “ xL1, . . . ,Lny.
In particular, the implication FES ñ MES holds.

Example. Opℓq,Opℓ ` 1q, . . . ,Opℓ ` nq is full [BEILINSON].



MES ñ FES? No - because of so-called phantom categories.

Kuznetsov’s Conjecture (ICM ’14).

Let X be a smooth projective variety. If DpX q “ xE1, . . . ,Eny is generated by an
ES, then MES ñ FES.

Counterexample. [Krah23]
MES œ FES of line bundles on a rational surface whose derived category is
generated by an ES.



When does MES ñ FES hold?

Currently, it is known to apply to:
‚ Smooth projective toric varieties with Picard rank 1 [BEILINSON].
‚ Smooth projective toric varieties with Picard rank 2 [AW21].
‚ P1 ˆ P1 ˆ P1 [AA21].

Next: Does it hold for smooth projective toric varieties with Picard rank
ρ “ 3,4, . . .?

Today: concrete calculations for the pentagon XP “ P, P “



Properties of the pentagon P:

‚ dimP “ 2.

‚ rk K pPq “ 5.

‚ PicpPq “ Z3.

‚ ImmpPq is given by:

˝ The points p´1,´1,1q and p0,0,´2q;

˝ The lines p˚,´1,0q and p˚,0,´1q;

˝ The lines p´1, ˚,0q and p0, ˚,´1q.



Construction of MES with Julia:

‚ Set L1 “ p0,0,0q.
‚ Iteratively generate all ES of lengths 2, . . . ,5, using condition

Li ´ Lj P ImmpPq for all i ă j .

ù This gives 20 configurations of MES.
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Are these configurations full?



Augmentation.

The pentagon P is the blow-up of P1 ˆ P1 at a point.
ù FES on P can be constructed from those on P1 ˆ P1:

Theorem. ([LYY18], Thm. 3.6.)

Let π : X Ñ Y be the blow-up of a smooth projective surface Y at a point and E
the exceptional divisor of π. A sequence of line bundles,

pOY pD1q,OY pD2q, . . . ,OY pDℓqq

is a FES if and only if, for any 1 ď i ď ℓ,

pOX pπ˚D1 `Eq, . . . ,OX pπ˚Di´1 `Eq,OX pπ˚Diq,OX pπ˚Di `Eq,OX pπ˚Di`1q, . . . ,OX pπ˚Dℓqq

is a FES.



There are four distinct configurations of (normalized) FES on P1 ˆ P1 [AW21]:
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and their vertical equivalents
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We have E “ p1,1,´1q and the pullback is given by

π˚ : Z2 Ñ Z3, pz1, z2q ÞÑ pz2, z1,0q.

Example: For i “ 1:

pOpD1q, OpD2q, OpD3q, OpD4qqP1ˆP1

ÝÑ pOpπ˚D1q, Opπ˚D1 ` Eq, Opπ˚D2q, Opϕ˚D3q, Opπ˚D4qqP

This gives:
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In total, augmentation gives 16 FES.



Helixing.

Let L1, . . . ,Lℓ be an ES. The infinite sequence pLiqiPZ defined by

Li`ℓ “ Li b ω´1
X , ωX “ canonical bundle of X ,

is called a helix of period ℓ.
In particular, any subsequence pLk`1, . . . ,Lk`ℓq of length ℓ is an ES.

Theorem.

If pL1, . . . ,Lℓq is a FES, then any exceptional sequence of the form
pLk`1, . . . ,Lk`ℓq is full.



Example:

The anticanonical divisor class is p´1,´1,´1q, i.e. Li`5 “ Li ` p1,1,1q.
The helixings of AESi“1

1 are:
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In summary:

‚ Helixing produces 80 FES on P.

‚ There are duplicates: The helixings of AESi“1
1 and AESi“2

2 are identical:
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‚ The 20 distinct configurations of FES are exactly the MES coming from Julia.

Conjecture: MES ñ FES for the pentagon.



Thank you for your attention!
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