

Exceptional sequences of line bundles on the pentagon

Durham, 23rd July 2024

General notation.

Let X be a smooth projective toric variety over \mathbb{C} , e.g. $X_P = \mathbb{P}^2$, $P = \sum$

- $D(X) := D^b(Coh(X))$ bounded derived category of X.
 - $K(X) := K_0(Coh(X))$ Grothendieck group of X is of finite rank $N := \operatorname{rk} K(X) < \infty$.
 - E_1, \ldots, E_n exceptional sequence, $E_i \in \mathrm{Ob}(\mathbf{D}(X))$.

Definition.

A sequence $\mathcal{L}_1, \dots, \mathcal{L}_n$ of line bundles on X is **exceptional (ES)** iff

$$\mathcal{L}_i - \mathcal{L}_j \in \operatorname{Imm}(X) = \{ \mathcal{L} \in \operatorname{Pic}(X) \mid \operatorname{H}^{ullet}(X, \mathcal{L}) = 0 \}$$
 for all $i < j$,

where Imm(X) is the **immaculate locus** of X.

Example.

$$\operatorname{Pic}(\mathbb{P}^n)\cong\mathbb{Z}\colon \operatorname{Imm}(\mathbb{P}^n)=\{-n,\dots,-1\}\Longrightarrow$$

$$\mathcal{O}(\ell), \mathcal{O}(\ell+1), \dots, \mathcal{O}(\ell+n)$$
 is an ES.

Definition.

An exceptional sequence $\mathcal{L}_1, \ldots, \mathcal{L}_n$ on X is

- maximal (MES) iff $n = \operatorname{rk} K(X)$.
 - full (FES) iff $D(X) = \langle \mathcal{L}_1, \dots, \mathcal{L}_n \rangle$.

In particular, the implication FES \Rightarrow MES holds.

Example. $\mathcal{O}(\ell), \mathcal{O}(\ell+1), \dots, \mathcal{O}(\ell+n)$ is full [BEILINSON].

 $\text{MES} \Rightarrow \text{FES? No}$ - because of so-called phantom categories.

Kuznetsov's Conjecture (ICM '14).

Let X be a smooth projective variety. If $D(X) = \langle E_1, \dots, E_n \rangle$ is generated by an ES, then MES \Rightarrow FES.

Counterexample. [Krah23]

MES ⇒ FES of line bundles on a rational surface whose derived category is generated by an ES.

When does MES ⇒ FES hold?

Currently, it is known to apply to:

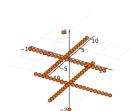
- Smooth projective toric varieties with Picard rank 1 [Beilinson].
- Smooth projective toric varieties with Picard rank 2 [AW21].
- $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ [AA21].

Next: Does it hold for smooth projective toric varieties with Picard rank $\rho = 3, 4, \ldots$?

Today: concrete calculations for the pentagon $X_P = \mathcal{P}$, $P = \sum_{i=1}^{n} \mathbf{r}$

Properties of the pentagon \mathcal{P} :

- dim $\mathcal{P} = 2$.
- $\operatorname{rk} K(\mathcal{P}) = 5$.
- $\operatorname{Pic}(\mathcal{P}) = \mathbb{Z}^3$.
- $Imm(\mathcal{P})$ is given by:
 - \circ The points (-1, -1, 1) and (0, 0, -2);
 - \circ The lines (*,-1,0) and (*,0,-1);
 - $\circ \ \ \text{The lines} \ (-1,*,0) \ \text{and} \ (0,*,-1).$



Construction of MES with Julia:

- Set $\mathcal{L}_1 = (0, 0, 0)$.
- Iteratively generate all ES of lengths 2,..., 5, using condition

$$\mathcal{L}_i - \mathcal{L}_j \in \text{Imm}(\mathcal{P})$$
 for all $i < j$.

This gives 20 configurations of MES.

Example:

$$\left[\begin{pmatrix}0\\0\\0\end{pmatrix},\begin{pmatrix}1\\1\\-1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}1\\p\\0\end{pmatrix},\begin{pmatrix}1\\p+1\\0\end{pmatrix}\right],\quad p\in\mathbb{Z}.$$

Are these configurations full?

Augmentation.

The pentagon \mathcal{P} is the blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$ at a point. \longrightarrow FES on \mathcal{P} can be constructed from those on $\mathbb{P}^1 \times \mathbb{P}^1$:

Theorem. ([LYY18], Thm. 3.6.)

Let $\pi: X \to Y$ be the blow-up of a smooth projective surface Y at a point and E the exceptional divisor of π . A sequence of line bundles,

$$(\mathcal{O}_Y(D_1), \mathcal{O}_Y(D_2), \dots, \mathcal{O}_Y(D_\ell))$$

is a FES if and only if, for any $1 \le i \le \ell$,

$$(\mathcal{O}_{X}(\pi^{*}D_{1}+E),\ldots,\mathcal{O}_{X}(\pi^{*}D_{i-1}+E),\mathcal{O}_{X}(\pi^{*}D_{i}),\mathcal{O}_{X}(\pi^{*}D_{i}+E),\mathcal{O}_{X}(\pi^{*}D_{i+1}),\ldots,\mathcal{O}_{X}(\pi^{*}D_{\ell}))$$

is a FES.

There are four distinct configurations of (normalized) FES on $\mathbb{P}^1 \times \mathbb{P}^1$ [AW21]:

$$\mathrm{ES}_1 = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} p \\ 1 \end{pmatrix}, \begin{pmatrix} p+1 \\ 1 \end{pmatrix} \right]$$

$$\mathrm{ES}_2 = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} p \\ 1 \end{pmatrix}, \begin{pmatrix} p+1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right]$$

and their vertical equivalents

$$\mathrm{ES}_3 = \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p+1 \end{smallmatrix} \right) \right] \quad \text{and} \quad \mathrm{ES}_4 = \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p+1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right) \right],$$
 where $p \in \mathbb{Z}$.

We have E = (1, 1, -1) and the pullback is given by

$$\pi^*: \mathbb{Z}^2 \to \mathbb{Z}^3, \ (z_1, z_2) \mapsto (z_2, z_1, 0).$$

Example: For i = 1:

$$(\mathcal{O}(D_1), \mathcal{O}(D_2), \mathcal{O}(D_3), \mathcal{O}(D_4))_{\mathbb{P}^1 \times \mathbb{P}^1}$$
 $\longrightarrow (\mathcal{O}(\pi^*D_1), \mathcal{O}(\pi^*D_1 + E), \mathcal{O}(\pi^*D_2), \mathcal{O}(\phi^*D_3), \mathcal{O}(\pi^*D_4))_{\mathcal{D}}$

This gives:

$$\mathrm{ES}_1 = \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} p \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} p+1 \\ 1 \end{smallmatrix} \right) \right] \longrightarrow \mathrm{AES}_1^{i=1} = \left[\left(\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ 1 \\ -1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p+1 \\ 0 \end{smallmatrix} \right) \right].$$

In total, augmentation gives 16 FES.

Helixing.

Let $\mathcal{L}_1, \dots, \mathcal{L}_\ell$ be an ES. The infinite sequence $(\mathcal{L}_i)_{i \in \mathbb{Z}}$ defined by

$$\mathcal{L}_{i+\ell} = \mathcal{L}_i \otimes \omega_X^{-1}, \qquad \omega_X = \text{canonical bundle of } X,$$

is called a helix of period ℓ .

In particular, any subsequence $(\mathcal{L}_{k+1}, \dots, \mathcal{L}_{k+\ell})$ of length ℓ is an ES.

Theorem.

If $(\mathcal{L}_1,\ldots,\mathcal{L}_\ell)$ is a FES, then any exceptional sequence of the form $(\mathcal{L}_{k+1},\ldots,\mathcal{L}_{k+\ell})$ is full.

Example:

The anticanonical divisor class is (-1,-1,-1), i.e. $\mathcal{L}_{i+5} = \mathcal{L}_i + (1,1,1)$. The helixings of $\text{AES}_1^{i=1}$ are:

							I	I	
\mathcal{L}_1	\mathcal{L}_2	\mathcal{L}_3	\mathcal{L}_4	\mathcal{L}_5	\mathcal{L}_6	\mathcal{L}_7	\mathcal{L}_8	\mathcal{L}_9	\mathcal{L}_{10}
$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p+1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2\\2\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\2\\1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ p+1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ p+2 \\ 1 \end{pmatrix}$
	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p+1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$				
		$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p+1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$			
			$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p+1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p+1 \\ 1 \end{pmatrix}$		
				$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ p+1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ p+1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	

In summary:

- Helixing produces 80 FES on \mathcal{P} .
- There are duplicates: The helixings of $AES_1^{i=1}$ and $AES_2^{i=2}$ are identical:

$$\mathrm{ES}_2 = \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} p \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right) \right] \longrightarrow \mathrm{AES}_2^{i=2} = \left[\left(\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ p \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ p+1 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ p+1 \\ 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix} \right) \right].$$

The 20 distinct configurations of FES are exactly the MES coming from Julia.

Conjecture: MES \Rightarrow FES for the pentagon.

Thank you for your attention!

- [AA21] K. ALTMANN AND M. ALTMANN, Exceptional sequences of 8 line bundles on $(\mathbb{P}^1)^3$, arXiv:2108.11806 [math.AG], 2021
- [AW21] K. ALTMANN AND F. WITT, The structure of exceptional sequences on toric varieties of Picard rank two, arXiv:2112.14637 [math.AG], 2021
- [Krah23] J. Krah, **A phantom on a rational surface**, arXiv:2304.01269 [math.AG], 2023
- [LYY18] W. LIU AND S. YANG AND X. YU, Classification of full exceptional collections of line bundles on three blow-ups of \mathbb{P}^3 , arXiv:1810.06367 [math.AG], 2018
- [Kuz14] A. KUZNETSOV, Semiorthogonal decompositions in algebraic geometry, arXiv:1404.3143 [math.AG], 2014