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Factor Analysis Models

Graph G = (V U®H, E), only edges from latent to observed variables. Usually, V = [p]. The factor analysis
model postulates that the observed variables are linear functions of the factors and noise, i.e., Xy = AXy + <.

SO I

W @ @ Wy W

e Covariance matrix:
Xv
Xy

e Observed covariance matrix (projection):
COV[X\/] = Q\/\/ + /\V’HQ"HHA—\EH

Cov

=(I=N1QU-N"T = (QVV + AVHQHHAEH /\VHQHH>
QHHA\/H QHH

e (Observed covariance model:
Fe={X :=Q+AAT e RVI¥IVI- Q > 0 diagonal, A € REv#}
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Factor Analysis Models

Graph G = (V U®H, E), only edges from latent to observed variables. Usually, V = [p]. The factor analysis
model postulates that the observed variables are linear functions of the factors and noise, i.e., Xy = AXy + <.

SO I

W @ @ Wy W

e Covariance matrix:
Xv
Xy

e Observed covariance matrix (projection):
COV[X\/] = Q\/\/ + /\V"HQHHA—\EH

Cov

=(I=N1QU-N"T = (QVV + AVHQHHAEH /\VHQHH>
QHHA\/H QHH

e (Observed covariance model:
Fe={X :=Q+AAT e RVI¥IVI- Q > 0 diagonal, A € REv#}

Goals:  dim(Fg)?  I(Fs) CRloy, i <j]?
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Example: Factor Analysis Models

W W W W W W O

Parameter matrix:

= ()\11 A1 A3 A1 As1 00 )T

= 0 0 0 X2 A2 Ae2 A Q = diag(wi1, w2, w33, Waa, Wss, Wee, Wr7)-

Observed covariance matrix:

wir + A3 Ao A11A31 A11\41 A11 51 0 0
AMidor wo + A3 AorAag A21 a1 A21 51 0 0
A11A31 o131 wsz + Ay A3141 A31 51 0 0

Y= AMiAa A21 41 A31 a1 wag A3 A Aaidst + Apds2 Aaodeo A2 A72
A11A51 A21 51 A31ds1  Aardsy + Aapdsy wss + A3 + A2, Asadeo A52A72
0 0 0 4262 5262 wes + Ao Ae2A72
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Previous work: Full Factor Analysis Models

Dimension: [Drton, Sullivant, Sturmfels, 2007]

dim(re) =min(p(# + 1) - (5], (3 1))

where |V| = p.
|deal: [Drton, Sullivant, Sturmfels, 2007]
/(FG) = Mp’|7.[| ﬂR[O,‘j, / <j],

where M, 13 € R[oj;, i < j] is the ideal generated by all
(|H| + 1) x (|H] + 1) minors of a symmetric p X p matrix.
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Previous work: Full Factor Analysis Models

DimenSion: [Drton, Sullivant, Sturmfels, 2007] Grébner baSiS:
: . H]\ (p+1
dim(re) =min(p(# + 1) - (5], (3 1)) ] = 1
where |V| = p. Gp1 = {0jjow — oo, TiTjK — OikOji

1<i<j<k<I<p}
|deal: [Drton, Sullivant, Sturmfels, 2007]

. |H| = 2:
/(FG) = Mp’|7.[| ﬂR[O,‘j,I <_/],

S _ e F¢ secant variety of the 1-factor model.
where M, 13 € R[oj;, i < j] is the ideal generated by all

(|H| + 1) x (|H] + 1) minors of a symmetric p X p matrix.
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e Delightful strategy. [Sullivant, 2009]



New Project: Sparse Factor Analysis Models

At least one edge is missing and under Zero Upper Triangular Assumption (ZUTA): ZUTA ensures that the
rows and columns of the factor loading matrix A can be permuted such that the upper triangle of the matrix

is zero. Generalizes k-pure children assumption.

(hy)
W @ B W wWw 6

o C(V,2) ={{v,w}:v,we V,v+w}
e jpa({u,v})={h e H : hepa(u)npa(v)}: setof joint parents of a pair {u,v} € C(V,2).
e For any latent node h € H, C(V,2), ={{v,w} € C(V,2): h € jpa({v,w})}.

Dimension:

Theorem[DG . S]: Let G = (V UH, D) be a factor analysis graph such that ZUTA is satisfied. If there is a
ZUTA-conform pairwise disjoint collection of subsets A = (Ap)ne of C(V,2), where |Ay| < |ch(h)| such
that the sum of cardinalities > 4c3; |An| is maximal, then

dim(F(G)) = [V[+ > |A4|.
heH
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New Project: Sparse Factor Analysis Models

W @ ) )
Ap, = {{v1, vo} {v1, 3}, {v2, 3}, {w1, va}, {v2, va } }

An, = {{va, vs}, {vs, v6}, {vs, v7}, {v6, v} }
dim(F(G)) = |V| + Sher | As| = 7 + 5+ 4 — 16.

Example:
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New Project: Sparse Factor Analysis Models

W W W W W W O

Ap = {{vi, vo}, {v1, 3}, {va, 3}, {v1, va}, {v2, va} }
Ap, = {{va, s}, {vs, 6}, {5, v7 }, {v6, v} }
dim(F(G)) = |V| + Sher | As| = 7 + 5+ 4 — 16.

Corollary[DG f S]: If p > 5 and |H| = 2 where any latent node has at least 3 children, then
dim(Fg) = p + |E|.

Example:
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New Project: Sparse Factor Analysis Models

W @ @ W W

Example:

Ap = {{vi, vo}, {v1, 3}, {va, 3}, {v1, va}, {v2, va} }
Ap, = {{va, s}, {vs, 6}, {5, v7 }, {v6, v} }
dim(F(G)) = |V| + Sher | As| = 7 + 5+ 4 — 16.

Corollary[DG S]: If p > 5 and |H| = 2 where any latent node has at least 3 children, then

dim(Fg) = p + | E|.
No ZUTA but MathRepo: dim(F¢) =

ﬂ%ﬁ’?\

) ® W.®

-
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Joins
What about /(Fg)?
e If pa(u) Npa(v) =0, then o,, = 0 (degree one monomials).
o Let U, W C V be disjoint sets s.t. |U| = |W|=2. |pa(U)Npa(W)| <1, then det(Xy w) = O(tetrads).
Theorem[DG : S]: Let|H| = 2.
V(I(F6)) = V({Mp2 + M<1(G)} NR[oy, i < j]),
where M<1(G) is the ideal generated by all degree one monomials and tetrads corresponding to G.

Join of Varieties:

Wy Wo ={dwy + (1 — N)wa : wy € Wi, wy € Wh, A € R}

(Sparse) Factor Models = Joins of (Sparse) One-Factor Models: For two ideals , h, one defines
the join ideal h x I, such that Iy x b = I(V(h) « V(h)). I(Fg) =l * b.

(h)
W @ B WWw w6
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Delightful Strategy for Grobner Basis
Observation:

ins(h % k) Cins(h)*ins(k) for any term order <. If equality holds, then < is delightful for I, I,.

“Delightful” strategy: [sturmfels, Sullivant, 2006]

Find G C I * I, such that (in<(g)|g € G) = in<(h) *in<(h). Then G is a Grobner basis.

1. Find delightful term order <.
2. Understand in<(h) * in<(h).

3. Define polynomials g € G with correct initial terms.
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Circular Term Order

Circular order:
Any block-term order < such that o,, > 0,, whenever the circular distance between v and v is smaller than
the circular distance of w and z.

Examp|e: ® 015 > 024, ® 015004 — 025014, 045012 — 025014

® 034 = 025. ® 034025 — 035024, 045023 — 035024.

The ideal of the one-factor analysis model is the toric edge ideal of the complete graph on A C [p] vertices
with B := [p]\A isolated vertices. Its initial ideal is a monomial edge ideal.
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Circular Term Order

Circular order:

Any block-term order < such that o,, > 0,, whenever the circular distance between v and v is smaller than
the circular distance of w and z.
Example: ® 015 > 04, ® 015024 — 025014, 045012 — 025014

® 034 = 025. ® 034025 — 035024, 045023 — 035024.

The ideal of the one-factor analysis model is the toric edge ideal of the complete graph on A C [p] vertices
with B := [p]\A isolated vertices. Its initial ideal is a monomial edge ideal.

Grobner basis: Let B C [p] be the set of isolated vertices of the one-factor analysis graph and ALIB = V.

The set of degree-one monomials and tetrads
{oj|i€eBorjeB}U{ojon—ouoj onoi—ouoy | 1 <i<j<k<l<IA}.
is a reduced Grobner basis for the sparse one-factor analysis model with respect to any circular term order.
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Non-Crossing Edge Graphs

AN

O 6 ®B® & O © @ 0 @ 6 ® O

Complete graph on v € V s.t. pa(v) # 0:
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Grobner Basis for “Overlap = 2"
in<(h) = in<(h) is given by the edge ideal of the hypergraph obtained by gluing the non-crossing edge graphs.

Glued Hypergraph Grobner basis of h x L = I(F¢)

® 016,017,026, 027,036, 037.

39
2 % ® 047056 — 057046,
@ (23) (57:, 012034 — 013024,
% \\ 014023 — 013024,
23 @ 012035 — 0130725,
€,

\é ®({1@ (56) 015023 — 013025,
(14) 015024 — 0140725,
@ 015034 — 014035,

025034 — 024035.

° — 067024015 — 012047056,
— 067034015 — 013047056,
— 067034025 — 023047056
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Conclusion

Theorem [DG#S]: The generators of a Grobner basis for /4, g, 1 * Ia, 5,1 With respect to any circular term
order for sparse two-factor analysis models where A; N Ay = {j1, jo} comes in three types:

1. Degree-one monomial: o is a generator, where pa(i) N pa(j) = 0.
2. Tetrads: The binomial generators of the Grobner basis of /4, 5,1 and /4, B, 1 With respect to any circular
order that do not contain oj,.

3. Hexads: Consider i1, io € A1\{j1,/2} and ki, ko € A\{j1,/o}. Then

OkikyOi1inOjijp = OkikaOj1inOjois = Oivin0 j1koO joky s

is a degree three generator, where {i1, b}, {j1,jo} and {j1, o}, {k1, ko} are non-crossing edges of the
complete graphs on the vertices A1\ {j1, 2} and Ax\{J1, o} respectively.

Question: Is there a 2-delightful term order for sparse two-factor analysis models?

Conjecture: The ideal of the sparse two-factor analysis model corresponding to graph G is generated by
off-diagonal 3 x 3-minors, pentads, and the polynomials in M<1(G).
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