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{1 + 4x + 3y + 2z = 0,
3 + 2x − 3y − 5z = 0

(x, y, z) ∈ YA = {x3 − yz = 0}

(t1, t2) ∈ ℝ2

{1 + 4t1t2 + 3t1t2
2 + 2t2

1 t2 = 0,
3 + 2t1t2 − 3t1t2

2 − 5t2
1 t2 = 0

# solutions = deg YA = vol P
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monomial basis: ill-conditioned Chebyshev basis: much better!

Solving polynomial systems in practice:

monomials Toric 
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Chebyshev 
polynomials

Chebyshev 
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Transition
monomial basis

a + bt6 + ct11 = 0

 for a + bx + cy = 0 (x, y) ∈ Y(6,11)
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Transition
monomial basis

a + bt6 + ct11 = 0

 for a + bx + cy = 0 (x, y) ∈ Y(6,11)

-1 1

-1

1

Chebyshev basis

-1 1

-1

1

a + bT6(t) + cT11(t) = 0

 for a + bx + cy = 0 (x, y) ∈ X(6,11)
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Chebyshev polynomials

Tn+1(x) = 2xTn(x) − Tn−1(x)
T0(x) = 1, T1(x) = x,
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Chebyshev polynomials

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
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T4(x) = 8x4 − 8x2 + 1
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Chebyshev polynomials

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1

⋮

-1.0 -0.5 0 0.5 1.0

-1.0

-0.5

0

0.5

1.0

Tn+1(x) = 2xTn(x) − Tn−1(x)
T0(x) = 1, T1(x) = x,

Tn(x) = cos(n arccos x)
Trigonometric-like:

Monomial-like:
Tn⋅m(x) = Tm⋅n(x) = Tn(x)Tm(x)

Orthogonal:

∫
1

−1
Tn(x)Tm(x)

dx

1 − x2
=

π
2

δn,m

interlaced roots
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Chebyshev curves
Definition: Let  and consider the map .
               The Chebyshev curve  associated to  is the Zariski closure of the image of .  

A = (α1, …, αs) ∈ ℕs ϕA : ℂ ∋ t ↦ (Tα1
(t), …, Tαs

(t)) ∈ ℂs

XA A ϕA
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Chebyshev curves
Definition: Let  and consider the map .
               The Chebyshev curve  associated to  is the Zariski closure of the image of .  

A = (α1, …, αs) ∈ ℕs ϕA : ℂ ∋ t ↦ (Tα1
(t), …, Tαs

(t)) ∈ ℂs

XA A ϕA

Theorem (Bel-Afia, M., Telen): 
If  and at least three entries are pairwise coprime,

then  is a smooth irreducible curve.
A = (α1, …, αs) ∈ ℕs

XA ⊂ ℂs

Theorem (Freudenburg x2):  If  are coprime, then 
     and it is irreducible. All its singularities are nodes.   

A = (α1, α2) ∈ ℕ2 XA = {Tα2
(x) − Tα1

(y) = 0}

Equations

A = (2,11,13)
A = (2,3,5)

A = (2,5,8)
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eal points in the planeℝ
Q: What about real solutions?
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A = (2,3,7)

The real points of  are 
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XA ∩ v⊥
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Conjecture: Let  be such that 3 of its entries are pairwise coprime. 
Any hyperplane through the origin intersects   in at least  real points. 

A = (α1, …, αs) ∈ ℕs

XA min
j∈[s]

αj
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A = (1 1 2
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Chebyshev varieties A = (α1, …, αs) ∈ ℕn×s

A = (1 1 2
2 1 3)

(t1
1 t2

2 , t1
1 t1

2 , t2
1 t3

2) (T1(t1)T2(t2), T1(t1)T1(t2), T2(t1)T3(t2))
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Chebyshev varieties A = (α1, …, αs) ∈ ℕn×s

A = (1 1 2
2 1 3)

(t1
1 t2

2 , t1
1 t1

2 , t2
1 t3

2) (T1(t1)T2(t2), T1(t1)T1(t2), T2(t1)T3(t2)) (cos(1t1 + 2t2), cos(1t1 + 1t2), cos(2t1 + 3t2))
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Tensor product Chebyshev varieties

XA,⊗ = image(ϕA) ⊂ ℂs
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Tensor product Chebyshev varieties

6x4y − x3z − 48x2y5 + 22x2y3 − 3x2y + 20xy4z − 3xy2z + 16y7 − 8y5 − 2y3z2 + y3 = 0

XA,⊗ = image(ϕA) ⊂ ℂs

 full rank,   A = (α1, …, αs) ∈ ℕn×s ϕA,⊗ : ℂn ∋ t ↦ (Tα1,1
(t1) ⋅ … ⋅ Tα1,n

(tn) , … , Tαs,1
(t1) ⋅ … ⋅ Tαs,n

(tn)) ∈ ℂs

dim XA,⊗ = n

deg XA,⊗ = ?

Under certain conditions it is the BKK prediction,
otherwise you can refine it exploiting combinatorial properties.

Equations: open question 
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Trigonometric Chebyshev varieties

XA,cos = image(ϕA) ⊂ ℂs,

 full rank,   A = (α1, …, αs) ∈ ℕn×s ϕA,cos : ℂn ∋ t ↦ (cos(α1 ⋅ t) , … , cos(αs ⋅ t)) ∈ ℂs
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dim XA,cos = n

Theorem (Bel-Afia, M., Telen): 
 is the Zariski closure of the projection of

onto . Moreover,  is irreducible.
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Trigonometric Chebyshev varieties

XA,cos = image(ϕA) ⊂ ℂs,

 full rank,   A = (α1, …, αs) ∈ ℕn×s ϕA,cos : ℂn ∋ t ↦ (cos(α1 ⋅ t) , … , cos(αs ⋅ t)) ∈ ℂs

dim XA,cos = n

Theorem (Bel-Afia, M., Telen): 
 is the Zariski closure of the projection of

onto . Moreover,  is irreducible.

XA,cos ⊂ ℂs

𝒱 = {(x, u) ∈ ℂs × (ℂ*)s | u ∈ YA, u2
i − 2uixi + 1 = 0 for i = 1,…, s}

ℂs XA,cos

ℂs × (ℂ*)s

⊂

𝒱⟶

XA,cos YA

π ⟶

toric
ui = xi ± x2

i − 1

Equations: 

  deg XA,cos =
vol(conv(A ∪ −A))

deg π ⋅ ind A

Singularities: 
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Experiment: solving systems

, Euclidean degree ,
  real solutions.  

n = 2 30
deg XA = 1396, 382

fi(t) = ci,0 +
s

∑
j=1

ci,j Tαj
(t) = 0, i = 1,…, n, t ∈ ℂn

Ei
ge

nv
al

ue
 a

lg
or

ith
m

fi(t) = ci,0 +
s

∑
j=1

ci,j cos(aj ⋅ t) = 0, i = 1,…, n, t ∈ ℂn

, , ,
 complex solutions,  real solutions.  

n = 2 A = (4 4 6 7 9 2
8 4 1 2 6 7) deg XA = 129

258 128

M
onodrom

y
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Generalizations

Sparse interpolation in terms of 
multivariate Chebyshev polynomials.

E. Hubert and M.F. Singer (2022)

On multivariate Chebyshev polynomials 
and spectral approximations on triangles. 
B.N. Ryland and H.Z. Munthe-Kaas (2010)

For the root system  one has 𝒜2

T0,0 = 6, T1,0 = x, T0,1 = y, T1,1 =
1
4

xy − 3, …

A = (1 1 2
2 1 3)
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Generalizations

Sparse interpolation in terms of 
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E. Hubert and M.F. Singer (2022)

On multivariate Chebyshev polynomials 
and spectral approximations on triangles. 
B.N. Ryland and H.Z. Munthe-Kaas (2010)

For the root system  one has 𝒜2

T0,0 = 6, T1,0 = x, T0,1 = y, T1,1 =
1
4

xy − 3, …

A = (1 1 2
2 1 3)

Is (and how) the Real structure 
of the associated varieties rich?

Analogously for the basis of harmonic polynomials

Real lines on random cubic surfaces. 
R. Ait El Manssour, M. Belotti, CM (2021)

On fully real eigenconfigurations 
of tensors. 

K. Kozhasov (2018)



Chiara MeroniChebyshev varieties 14

monomials Toric 
varieties

Chebyshev 
polynomials

Chebyshev 
varieties: :=



Chiara MeroniChebyshev varieties 14

monomials Toric 
varieties

Chebyshev 
polynomials

Chebyshev 
varieties: :=

[arXiv:2401.12140]



Chiara MeroniChebyshev varieties 14

monomials Toric 
varieties

Chebyshev 
polynomials

Chebyshev 
varieties: :=

[arXiv:2401.12140]
chiara.meroni@eth-its.ethz.ch



Chiara MeroniChebyshev varieties 14

monomials Toric 
varieties

Chebyshev 
polynomials

Chebyshev 
varieties: :=

Thank you!
[arXiv:2401.12140]

chiara.meroni@eth-its.ethz.ch


