Chebyshev varieties [arXiv:2401.12140]

International Congress on Mathematical Software 2024 Classical Algebraic Geometry & Modern Computer Algebra: Innovative Software Design and its Applications

Chiara Meroni ETHzürich Institute for Theoretical Studies

Joint work with Zaïneb Bel-Afia

and Simon Telen

System of (nonlinear) polynomial equations on \mathbb{R}^n (or \mathbb{C}^n)

Chebyshev varieties

ETHzürich

System of linear equations on an algebraic variety

System of (nonlinear) polynomial equations on \mathbb{R}^n (or \mathbb{C}^n)

Chebyshev varieties

ETHzürich

System of linear equations on an algebraic variety

System of (nonlinear) polynomial equations on \mathbb{R}^n (or \mathbb{C}^n)

Chebyshev varieties

ETHzürich

System of linear equations on an algebraic variety

(1 + 4x + 3y + 2z = 0,3 + 2x - 3y - 5z = 0)

 $(x, y, z) \in Y_A = \{x^3 - yz = 0\}$

System of (nonlinear) polynomial equations on \mathbb{R}^n (or \mathbb{C}^n)

Chebyshev varieties

ETHzürich

System of linear equations on an algebraic variety

1 + 4x + 3y + 2z = 0,3 + 2x - 3y - 5z = 0

 $(x, y, z) \in Y_A = \{x^3 - yz = 0\}$

System of (nonlinear) polynomial equations on \mathbb{R}^n (or \mathbb{C}^n)

Chebyshev varieties

ETHzürich

System of linear equations on an algebraic variety

 $(x, y, z) \in Y_A = \{x^3 - yz = 0\}$

Why the monomial basis?

Solving polynomial systems in practice:

monomial basis: ill-conditioned

Chebyshev varieties

ETHzürich

Why the monomial basis?

Solving polynomial systems in practice:

monomial basis: ill-conditioned

Chebyshev varieties

ETHzürich

Chebyshev basis: much better!

Why the monomial basis?

Solving polynomial systems in practice:

monomial basis: ill-conditioned

Chebyshev varieties

ETHzürich

Chebyshev basis: much better!

monomial basis

```
a + bt^6 + ct^{11} = 0
```

a + bx + cy = 0 for $(x, y) \in Y_{(6,11)}$

Chebyshev varieties

monomial basis

```
a + bt^6 + ct^{11} = 0
```

a + bx + cy = 0 for $(x, y) \in Y_{(6,11)}$

Chebyshev varieties

ETHzürich

Chebyshev basis

$a + bT_6(t) + cT_{11}(t) = 0$

a + bx + cy = 0 for $(x, y) \in X_{(6,11)}$

Chebyshev polynomials

 $T_0(x) = 1,$ $T_1(x) = x,$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Chebyshev varieties

Chebyshev polynomials

$$T_0(x) = 1,$$
 $T_1(x) = x,$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Chebyshev varieties

Chiara Meroni

5

Chebyshev polynomials

$$T_0(x) = 1,$$
 $T_1(x) = x,$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Chebyshev varieties

ETHzürich

Monomial-like: $T_{n \cdot m}(x) = T_{m \cdot n}(x) = T_n(x)T_m(x)$

Trigonometric-like: $T_n(x) = \cos(n \arccos x)$

Definition: Let $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and consider the map $\phi_A : \mathbb{C} \ni t \mapsto (T_{\alpha_1}(t), ..., T_{\alpha_s}(t)) \in \mathbb{C}^s$. The Chebyshev curve X_A associated to A is the Zariski closure of the image of ϕ_A .

Chebyshev varieties

ETHzürich

Theorem (Freudenburg x2): If $A = (\alpha_1, \alpha_2) \in \mathbb{N}^2$ are coprime, then $X_A = \{T_{\alpha_2}(x) - T_{\alpha_1}(y) = 0\}$ and it is irreducible. All its singularities are nodes.

Chebyshev varieties

ETHzürich

Definition: Let $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and consider the map $\phi_A : \mathbb{C} \ni t \mapsto (T_{\alpha_1}(t), ..., T_{\alpha_s}(t)) \in \mathbb{C}^s$. The Chebyshev curve X_A associated to A is the Zariski closure of the image of ϕ_A .

Definition: Let $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and consider the map $\phi_A : \mathbb{C} \ni t \mapsto (T_{\alpha_1}(t), ..., T_{\alpha_s}(t)) \in \mathbb{C}^s$. The Chebyshev curve X_A associated to A is the Zariski closure of the image of ϕ_A .

Theorem (Freudenburg x2): If $A = (\alpha_1, \alpha_2) \in \mathbb{N}^2$ are coprime, then $X_A = \{T_{\alpha_2}(x) - T_{\alpha_1}(y) = 0\}$ and it is irreducible. All its singularities are nodes.

Theorem (Bel-Afia, M., Telen): If $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and at least three entries are pairwise coprime, then $X_A \subset \mathbb{C}^s$ is a smooth irreducible curve.

Chebyshev varieties

ETHzürich

Definition: Let $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and consider the map $\phi_A : \mathbb{C} \ni t \mapsto (T_{\alpha_1}(t), ..., T_{\alpha_s}(t)) \in \mathbb{C}^s$. The Chebyshev curve X_A associated to A is the Zariski closure of the image of ϕ_A .

Theorem (Freudenburg x2): If $A = (\alpha_1, \alpha_2) \in \mathbb{N}^2$ are coprime, then $X_A = \{T_{\alpha_2}(x) - T_{\alpha_1}(y) = 0\}$ and it is irreducible. All its singularities are nodes.

6

Theorem (Bel-Afia, M., Telen): If $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ and at least three entries are pairwise coprime, then $X_A \subset \mathbb{C}^s$ is a smooth irreducible curve.

ETHzürich

Real points in the plane

Q: What about real solutions?

Chebyshev varieties

Real points in the plane

Q: What about real solutions?

Chebyshev varieties

ETHzürich

Theorem (Bel-Afia, M., Telen):

A = (19, 23)

Real points in the plane

Chebyshev varieties

ETHzürich

Chebyshev varieties

Let $v \in S^{s-1}$. How many real points does $X_A \cap v^{\perp}$ have?

Chebyshev varieties

Let $v \in S^{s-1}$. How many real points does $X_A \cap v^{\perp}$ have?

Chebyshev varieties

ETHzürich

Let $v \in S^{s-1}$. How many real points does $X_A \cap v^{\perp}$ have?

The real points of $X_A \cap v^{\perp}$ are at least 2 and at most 7.

The real points of $X_A \cap v^{\perp}$ are at least 2 and at most 7.

Chebyshev varieties

ETHzürich

Let $v \in S^{s-1}$. How many real points does $X_A \cap v^{\perp}$ have?

Conjecture: Let $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^s$ be such that 3 of its entries are pairwise coprime. Any hyperplane through the origin intersects X_A in at least min α_i real points. $j \in [s]$

Chebyshev varieties $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^{n \times s}$

Chebyshev varieties

ETHzürich

$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$

Chebyshev varieties $A = (\alpha_1, ..., \alpha_s) \in \mathbb{N}^{n \times s}$

Chebyshev varieties

ETHzürich

$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$

$\left(\cos(1t_1+2t_2),\cos(1t_1+1t_2),\cos(2t_1+3t_2)\right)$

 $X_{A,\otimes} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s$

Chebyshev varieties

$A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \otimes} : \mathbb{C}^n \ni t \mapsto \left(T_{\alpha_{1,1}}(t_1) \cdot \dots \cdot T_{\alpha_{1,n}}(t_n) , \dots , T_{\alpha_{s,1}}(t_1) \cdot \dots \cdot T_{\alpha_{s,n}}(t_n) \right) \in \mathbb{C}^s$

 $\dim X_{A,\otimes} = n$ $X_{A,\otimes} = \operatorname{image}(\phi_A) \subset \mathbb{C}^s$

Chebyshev varieties

$A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \otimes} : \mathbb{C}^n \ni t \mapsto \left(T_{\alpha_{1,1}}(t_1) \cdot \dots \cdot T_{\alpha_{1,n}}(t_n) , \dots , T_{\alpha_{s,1}}(t_1) \cdot \dots \cdot T_{\alpha_{s,n}}(t_n) \right) \in \mathbb{C}^s$

$$X_{A,\otimes} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s$$

 $\dim X_{A,\otimes} = n$

$$\deg X_{A,\otimes} = ?$$

Chebyshev varieties

$A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \otimes} : \mathbb{C}^n \ni t \mapsto \left(T_{\alpha_{1,1}}(t_1) \cdot \dots \cdot T_{\alpha_{1,n}}(t_n) , \dots , T_{\alpha_{s,1}}(t_1) \cdot \dots \cdot T_{\alpha_{s,n}}(t_n) \right) \in \mathbb{C}^s$

 $\dim X_{A,\otimes} = n$ $X_{A,\otimes} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s$ $\deg X_{A,\otimes} = ?$

 $6x^4y - x^3z - 48x^2y^5 + 22x^2y^3 - 3x^2y + 20xy^4z - 3xy^2z + 16y^7 - 8y^5 - 2y^3z^2 + y^3 = 0$

Chebyshev varieties

 $6x^4y - x^3z - 48x^2y^5 + 22x^2y^3 - 3x^2y + 20xy^4z - 3xy^2z + 16y^7 - 8y^5 - 2y^3z^2 + y^3 = 0$

Under certain conditions it is the BKK prediction, otherwise you can refine it exploiting combinatorial properties.

Chebyshev varieties

 $\dim X_{A,\otimes} = n$ $X_{A,\otimes} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s$ $\deg X_{A,\otimes} = ?$

 $6x^4y - x^3z - 48x^2y^5 + 22x^2y^3 - 3x^2y + 20xy^4z - 3xy^2z + 16y^7 - 8y^5 - 2y^3z^2 + y^3 = 0$

Under certain conditions it is the BKK prediction, otherwise you can refine it exploiting combinatorial properties.

Equations: open question

Chebyshev varieties

Trigonometric Chebyshev varieties

 $A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \cos} : \mathbb{C}^n \ni t \mapsto (\cos(\alpha_1 \cdot t), \dots, \cos(\alpha_s \cdot t)) \in \mathbb{C}^s$

 $X_{A,\cos} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s,$

Chebyshev varieties

Trigonometric Chebyshev varieties

 $A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \cos} : \mathbb{C}^n \ni t \mapsto (\cos(\alpha_1 \cdot t), \dots, \cos(\alpha_s \cdot t)) \in \mathbb{C}^s$

 $\frac{X_{A,\cos}}{X_{A,\cos}} = \operatorname{image}(\phi_A) \subset \mathbb{C}^s, \quad \dim X_{A,\cos} = n$

Chebyshev varieties

Trigonometric Chebyshev varieties

 $A = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^{n \times s} \text{ full rank, } \phi_{A, \cos} : \mathbb{C}^n \ni t \mapsto (\cos(\alpha_1 \cdot t), \dots, \cos(\alpha_s \cdot t)) \in \mathbb{C}^s$

 $\underline{X_{A,\cos}} = \overline{\operatorname{image}(\phi_A)} \subset \mathbb{C}^s, \quad \operatorname{dim} X_{A,\cos} = n$

Theorem (Bel-Afia, M., Telen): $X_{A,\cos} \subset \mathbb{C}^s$ is the Zariski closure of the projection of $\mathscr{V} = \{(x, u) \in \mathbb{C}^s \times (\mathbb{C}^*)^s \mid u \in Y_A, u_i^2 - 2u_i x_i + 1 = 0 \text{ for } i = 1, ..., s\}$ onto \mathbb{C}^s . Moreover, $X_{A,\cos}$ is irreducible.

Chebyshev varieties

Experiment: solving systems

$$f_i(t) = c_{i,0} + \sum_{j=1}^{s} c_{i,j} T_{\alpha_j}(t) = 0, \quad i = 1, \dots, n, \quad t \in \mathbb{C}$$

n = 2, Euclidean degree 30, $\deg X_A = 1396$, 382 real solutions.

Chebyshev varieties

ETHzürich

Generalizations

On multivariate Chebyshev polynomials and spectral approximations on triangles. B.N. Ryland and H.Z. Munthe-Kaas (2010)

Sparse interpolation in terms of multivariate Chebyshev polynomials. E. Hubert and M.F. Singer (2022)

For the root system
$$\mathscr{A}_2$$
 one has
 $T_{0,0} = 6, T_{1,0} = x, T_{0,1} = y, T_{1,1} = \frac{1}{4}xy - 3, ...$

Chebyshev varieties

Generalizations

On multivariate Chebyshev polynomials and spectral approximations on triangles. B.N. Ryland and H.Z. Munthe-Kaas (2010)

Sparse interpolation in terms of multivariate Chebyshev polynomials. E. Hubert and M.F. Singer (2022)

For the root system \mathscr{A}_2 one has $T_{0,0} = 6, T_{1,0} = x, T_{0,1} = y, T_{1,1} = \frac{1}{4}xy - 3, ...$

Chebyshev varieties

ETHzürich

Analogously for the basis of harmonic polynomials

Is (and how) the Real structure of the associated varieties rich?

On fully real eigenconfigurations of tensors. K. Kozhasov (2018)

Real lines on random cubic surfaces. R. Ait El Manssour, M. Belotti, CM(2021)

ETHzürich

chiara.meroni@eth-its.ethz.ch

ETHzürich

chiara.meroni@eth-its.ethz.ch

