Degenerations and smoothings of Fano varieties: computational aspects International Congress on Mathematical Software Durham, 22 - 25 July 2024

Simon Felten

University of Oxford

joint work with Alessio Corti, Andrea Petracci, Helge Ruddat, Matthias Zach

Thursday 25th July, 2024

Fano varieties

X =smooth projective variety / \mathbb{C} , dim $(X) = d \ge 1$ X is a Fano variety if ω_X^{\vee} is ample

<□ > < @ > < E > < E > E のQ 2/19

Fano varieties

X = smooth projective variety / \mathbb{C} , X is a Fano variety if ω_X^{\vee} is ample

$$\dim(X) = d \ge 1$$

Example: Projective space

 $\mathbb{P}^3=(\mathbb{C}^4\setminus\{0\})/{\sim}$

Example: Smooth cubic surface

$$C = \{F_3 = 0\} \subset \mathbb{P}^3$$

where

$$F_3 = X^3 + Y^3 + Z^3 - W^3$$

There are already infinitely many cubic surfaces which are not isomorphic as algebraic varieties. But:

Theorem (Kollár–Miyaoka–Mori 1992)

In any given dimension $n \ge 1$, there are (essentially) only finitely many families of smooth Fano varieties.

There are already infinitely many cubic surfaces which are not isomorphic as algebraic varieties. But:

Theorem (Kollár–Miyaoka–Mori 1992)

In any given dimension $n \ge 1$, there are (essentially) only finitely many families of smooth Fano varieties.

More precisely: \exists morphism $\pi: \mathcal{X} \to M$ of quasi-projective varieties such that $\{\mathcal{X}_b \mid b \in M\}/\simeq = \{\text{smooth Fano } X\}/\simeq$.

There are already infinitely many cubic surfaces which are not isomorphic as algebraic varieties. But:

Theorem (Kollár–Miyaoka–Mori 1992)

In any given dimension $n \ge 1$, there are (essentially) only finitely many families of smooth Fano varieties.

More precisely: \exists morphism $\pi: \mathcal{X} \to M$ of quasi-projective varieties such that $\{\mathcal{X}_b \mid b \in M\}/\simeq = \{\text{smooth Fano } X\}/\simeq$.

For Fano surfaces, the number has been known classically.

Theorem

There are essentially only 10 families of del Pezzo surfaces, i.e., $\pi: \mathcal{X} \to M$ can be chosen s.t. M has 10 irr. conn. components.

The case of threefolds is also solved, although considerably later.

Theorem (Iskovskih, Mori–Mukai, 1977 - 1985)

There are essentially only 105 families of smooth Fano threefolds.

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ♀ < 4/19

The case of threefolds is also solved, although considerably later.

Theorem (Iskovskih, Mori–Mukai, 1977 - 1985)

There are essentially only 105 families of smooth Fano threefolds.

In dimension $d \ge 4$, the number is unknown!

The case of threefolds is also solved, although considerably later.

Theorem (Iskovskih, Mori–Mukai, 1977 - 1985)

There are essentially only 105 families of smooth Fano threefolds.

In dimension $d \ge 4$, the number is unknown!

Goal

Develop new methods to construct Fano varieties as a step toward a complete list in higher dimensions.

Starting point: Gorenstein toric Fano varieties

reflexive polytope $\Delta \subset \mathbb{R}^d$


```
toric variety X(\Delta),
Gorenstein and Fano
```

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の へ ⊙ 5/19

Starting point: Gorenstein toric Fano varieties

reflexive polytope $\Delta \subset \mathbb{R}^d$

toric variety $X(\Delta)$, Gorenstein and Fano

In any dimension d, there are only finitely many reflexive polytopes.

dim	#	smooth $\#$
1	1	1
2	16	5
3	4,319	18
4	473,800,776	124

<<u>◆□ ▶ < □ ▶ <</u> ■ ▶ < ■ ▶ ■ ⑦ Q @ 5/19

How can we simplify smooth Fano varieties?

How can we simplify smooth Fano varieties?

By degenerating them until they break into simple pieces.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

How can we simplify smooth Fano varieties?

By degenerating them until they break into simple pieces.

$$\mathcal{X} = \{XYZ - t \cdot (X^3 + Y^3 + Z^3 - W^3) = 0\} \subset \mathbb{P}^3 \times \mathbb{P}^1 \xrightarrow{f} \mathbb{P}^1$$

< □ > < @ > < E > < E > E の Q · 7/19

A reflexive polytope Δ gives rise to a degenerate Fano var. $X_0(\Delta)$.

Aim: Recognize $X_0(\Delta)$ as degenerate fiber of a degenerating family $f: X \to \mathbb{A}^1$ of smooth Fano varieties.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ 8/19

Aim: Recognize $X_0(\Delta)$ as degenerate fiber of a degenerating family $f: X \to \mathbb{A}^1$ of smooth Fano varieties.

Strategy

Construct, order by order, infinitesimal thickenings

$$f_k \colon X_k(\Delta) o S_k = \operatorname{Spec} \mathbb{C}[t]/(t^{k+1})$$

Method

Use logarithmic deformation theory:

- (1) log scheme = scheme + extra structure
- (2) Log smooth deformations are locally unique.
- (3) Log smooth deformations approach a smoothing in the limit.

"Dream Recipe"

- (1) Construct degenerate Fano variety $X_0(\Delta)$.
- (2) Endow X₀(Δ) with a log structure to obtain log smooth morphism

$$X_0^\dagger(\Delta) o S_0^\dagger, \qquad S_0^\dagger \coloneqq \operatorname{Spec}(\mathbb{N} \xrightarrow{1 \mapsto 0} \mathbb{C}).$$

(3) Show existence of infinitesimal log smooth deformations

$$X_k^\dagger(\Delta) o S_k^\dagger, \qquad S_k^\dagger \coloneqq \operatorname{Spec}(\mathbb{N} \xrightarrow{1 \mapsto t} \mathbb{C}[t]/(t^{k+1})),$$

up to any order.

(4) Obtain smoothing $X \to S$ as limit.

Log singularities

Log deformation theory works well for log smooth spaces, but our example $f : \mathcal{X} \to \mathbb{P}^1$ is not log smooth!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Log singularities

Log deformation theory works well for log smooth spaces, but our example $f : \mathcal{X} \to \mathbb{P}^1$ is not log smooth!

< □ > < @ > < ≧ > < ≧ > ≧ の Q ↔ 11/19

Log singularities

Log deformation theory works well for log smooth spaces, but our example $f : \mathcal{X} \to \mathbb{P}^1$ is not log smooth!

Generically log smooth families

Definition

A generically log smooth family consists of:

- (a) a flat and separated morphism of finite presentation $f: X \to S$ whose fibers satisfy Serre's condition (S_2) and are geometrically reduced;
- (b) an open subset $j: U \xrightarrow{\subseteq} X$ whose complement $Z = X \setminus U$ has relative codimension ≥ 2 ;
- (c) the structure of a log smooth and saturated morphism

$$f \circ j \colon U^{\dagger} \to S^{\dagger}$$

of log schemes.

Generically log smooth families

Definition

A class of log singularities \mathscr{C} is a set of gls families over Spec $\mathbb{C}[\![t]\!]$, the set of local models. A gls family $f_k : X_k \to S_k$ is of class \mathscr{C} if it is, locally in the étale topology, isomorphic to the base change of a family in \mathscr{C} , i.e., of a local model.

"Definition"

A class of log singularities \mathscr{C} is mild if certain technical conditions are met. For example, the Hodge–de Rham spectral sequence

$$H^q(X_0,\mathcal{A}^p_{X_0/S_0}) \Rightarrow \mathbb{H}^{p+q}(X_0,\mathcal{A}^{\bullet}_{X_0/S_0})$$

degenerates at E_1 . Here, \mathcal{A}^{\bullet} is some log de Rham complex.

The logarithmic Bogomolov–Tian–Todorov theorem

Theorem (Chan–Leung–Ma 2019, F–Filip–Ruddat 2019, F 2019, F–Petracci 2021, F 2023)

Let \mathscr{C} be a mild class of log singularities. Let $f_0: X_0 \to S_0$ be a proper gls family of class \mathscr{C} . Assume that f_0 is log Calabi–Yau. Then the logarithmic deformation functor

$$\mathsf{LD}^{\mathscr{C}}_{X_0/S_0} \colon \mathsf{Art}_{\mathbb{C}[\![t]\!]} \to \mathsf{Set}$$

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 14/19

is unobstructed.

The logarithmic Bogomolov–Tian–Todorov theorem

Theorem (Chan–Leung–Ma 2019, F–Filip–Ruddat 2019, F 2019, F–Petracci 2021, F 2023)

Let \mathscr{C} be a mild class of log singularities. Let $f_0: X_0 \to S_0$ be a proper gls family of class \mathscr{C} . Assume that f_0 is log Calabi–Yau. Then the logarithmic deformation functor

$$\mathsf{LD}^{\mathscr{C}}_{X_0/S_0} \colon \mathsf{Art}_{\mathbb{C}[\![t]\!]} \to \mathsf{Set}$$

is unobstructed.

Corollary

In the situation of the theorem, there is a (partial) smoothing $X_{\eta}/\mathbb{C}((t))$ of X_0 .

Finding the right class of log singularities for $X_0(\Delta)$

Candidate from some construction of log structures on $X_0(\Delta)$:

Finding the right class of log singularities for $X_0(\Delta)$

It is difficult to determine if a given class of log sing. ${\mathscr C}$ is mild.

Fact

If \mathscr{C} is a mild class of log singularities, and if $f: X \to \operatorname{Spec} \mathbb{C}\llbracket t \rrbracket$ is proper and of class \mathscr{C} , then $R^q f_* \mathcal{A}^p_{X/S}$ is locally free of finite rank.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 16/19

Finding the right class of log singularities for $X_0(\Delta)$

It is difficult to determine if a given class of log sing. ${\mathscr C}$ is mild.

Fact

If \mathscr{C} is a mild class of log singularities, and if $f: X \to \operatorname{Spec} \mathbb{C}\llbracket t \rrbracket$ is proper and of class \mathscr{C} , then $R^q f_* \mathcal{A}^p_{X/S}$ is locally free of finite rank.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 16/19

Method

⇒ The hypothesis that 𝒞 is a mild class can be falsified computationally.

The experiment: setup

Definition of the class \mathscr{C}

We take the class of local models of elementary Gross–Siebert type together with the local model $\{xy = t^2 + w^2, zw = tu\}$ from above.

The log de Rham complex is given by $\mathcal{A}_{X/S}^{\bullet} := j_* \Omega_{U^{\dagger}/S^{\dagger}}^{\bullet}$ over $S = \operatorname{Spec} \mathbb{C}[\![t]\!]$, and by its base change over other bases.

The family

We consider the family

$$\mathcal{X} = \{XY = W^2 + t^2 V^2, \ ZW = tUV\} \subset \mathbb{P}^5 \times \mathbb{A}^1_t \xrightarrow{f} \mathbb{A}^1_t.$$

It has log singularities of class \mathscr{C} .

The experiment: result

OSCAR

Open Source Computer Algebra Research system written in julia; under development [Collaborative Research Center TRR 195]

Needed capacity

[under development]

Compute higher direct images of coherent sheaves \mathcal{F}/X along projective morphisms $f: X \to Y$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 18/19

The experiment: result

OSCAR

Open Source Computer Algebra Research system written in julia; under development [Collaborative Research Center TRR 195]

Needed capacity

[under development]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Compute higher direct images of coherent sheaves \mathcal{F}/X along projective morphisms $f: X \to Y$.

Result

 $R^2 f_* \mathcal{A}^1_{\mathcal{X}/\mathbb{A}^1}$ is *not* locally free. $\Rightarrow \mathscr{C}$ is not a mild class of log singularities.

Thank you for your attention.