How fast can we compute orbits of groups?

Anton Betten

Colorado State University

Many problems in Combinatorics and related fields reduce to the problem of computing orbits of groups acting on finite sets. These problems are about classifying objects of a certain type. The main techniques are these: There is canonical augmentation [5] and Snakes and Ladders [7]. In this talk, we would like to give the theoretical framework for both techniques and compare the performance of some of the available implementations. Orbiter [2] is a C++ package which provides an implementation of Snakes and Ladders. Another implementation exists in the computer algebra system GAP [4], using the Fining package [1] for finite geometry. An implementation in Magma [3] would be desirable. The canonical augmentation algorithm has been implemented in Nauty and more recently in Traces. See [6] for the latest description of this work.

References

- J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Lavrauw, and M. Neunhöffer. *Finite Incidence Geometry*. FInInG – a GAP package, version 1.4, 2017.
- [2] Anton Betten. Classifying Discrete Objects with Orbiter. ACM Communications in Computer Algebra 01/2014; 47(3/4):183-186. DOI:10.1145/2576802.2576832
- [3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235265.
- [4] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.8.10; 2018.
- [5] McKay, Brendan D. Isomorph-free exhaustive generation. J. Algorithms 26 (1998), no. 2, 306324.
- [6] McKay, B.D. and Piperno, A., Practical Graph Isomorphism, II, Journal of Symbolic Computation, 60 (2014), pp. 94-112, http://dx.doi.org/10.1016/j.jsc.2013.09.003
- [7] Schmalz, Bernd. Verwendung von Untergruppenleitern zur Bestimmung von Doppelnebenklassen. (German) [Use of subgroup ladders for the determination of double cosets] Bayreuth. Math. Schr. No. 31 (1990), 109143.