

The 5th International Congress on Mathematical Software

With Extreme Scale Computing the Rules Have Changed

Jack Dongarra

University of Tennessee Oak Ridge National Laboratory University of Manchester

- Overview of High Performance Computing
- Look at some of the adjustments that are needed with Extreme Computing

State of Supercomputing Today

- Pflops (> 10¹⁵ Flop/s) computing fully established with 95 systems.
- Three technology architecture possibilities or "swim lanes" are thriving.
 - Commodity (e.g. Intel)
 - Commodity + accelerator (e.g. GPUs) (93 systems)
 - Lightweight cores (e.g. ShenWei, ARM, Intel's Knights Landing)
- Interest in supercomputing is now worldwide, and growing in many new markets (around 50% of Top500 computers are used in industry).
- Exascale (10¹⁸ Flop/s) projects exist in many countries and regions.
- Intel processors have largest share, 91% followed by AMD, 3%.

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem

- Updated twice a year SC'xy in the States in November Meeting in Germany in June

- All data available from www.top500.org

Bize

4

Performance Development of HPC over the Last 24 Years from the Top500

PERFORMANCE DEVELOPMENT

June 2016: The TOP 10 Systems

Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt
1	National Super Computer Center in Wuxi	Sunway TaihuLight, SW26010 (260C) + Custom	China	10,649,000	93.0	74	15.4	6.04
2	National Super Computer Center in Guangzhou	Tianhe-2 NUDT, Xeon (12C) + <mark>IntelXeon Phi (57c)</mark> + Custom	China	3,120,000	33.9	62	17.8	1.91
3	DOE / OS Oak Ridge Nat Lab	Titan, Cray XK7, AMD (16C) + Nvidia Kepler GPU (14c) + Custom	USA	560,640	17.6	65	8.21	2.14
4	DOE / NNSA L Livermore Nat Lab	Sequoia, BlueGene/Q (16C) + custom	USA O SA	1,572,864	17.2	85	7.89	2.18
5	RIKEN Advanced Inst for Comp Sci	K computer Fujitsu SPARC64 VIIIf× (8C) + Custom	Japan	705,024	10.5	93	12.7	.827
6	DOE / OS Argonne Nat Lab	Mira, BlueGene/Q (16C) + Custom	USA	786,432	8.16	85	<i>3.9</i> 5	2.07
7	DOE / NNSA / Los Alamos & Sandia	Trinity, Cray XC40,Xeon (16C) + Custom	USA	301,056	8.10	80	4.23	1.92
8	Swiss CSCS	Piz Daint, Cray XC30, Xeon (8C) + Nvidia Kepler (14c) + Custom	Swiss	115,984	6.27	81	2.33	2.69
9	HLRS Stuttgart	Hazel Hen, Cray XC40, Xeon (12C) + Custom	Germany	185,088	5.64	76	3.62	1.56
10	KAUST	Shaheen II, Cray XC40, Xeon (16C) + Custom	Saudi Arabia	196,608	5.54	77	2.83	1.96
500	Internet company	Inspur Intel (8C) + Nnvidia	China	5440	.286	71		

Countries Share

China has 1/3 of the systems, while the number of systems in the US has fallen to the lowest point since the TOP500 list was created.

Rank	Name	Computer	Site	Total Cores	Rmax
9	Hazel Hen	Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect	HLRS -	185088	5640170
			Hochstleistungsrechenzentru m Stuttgart		
13	JUQUEEN	BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect	Forschungszentrum Juelich	458752	5008857
			(FZJ)		
27	SuperMUC	iDataPlex DX360M4, Xeon E5-26808C 2.70GHz, Infiniband FDR	Leibniz Rechenzentrum	147456	2897000
			Leibein Deebeen entrem	00040	0040000
28	2	NextScale fx360/05, Xeon E5-2697V3 14C 2.6GHZ, Thundand FDR14	Leibniz Rechenzentrum	80010	2813020
33	Mistral	bullx DLC 720, Xeon E5-2680v3 12C 2.5GHz/E5-2695V4 18C 2.1Ghz, Infiniband FDR	DKRZ - Deutsches	88992	2542150
57	JURECA	T-Platforms V-Class Xeon E5-2680v3 12C 2 5GHz Infinihand EDR/ParTec ParaStation ClusterSuite	Kilmarechenzentrum	49476	1424720
	001120,1	NVIDIA Tesla K80/K40	(FZJ)	10110	1121120
66		iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR	Max-Planck-Gesellschaft	65320	1283311.9
	_		MPI/IPP		
87	Taurus	bullx DLC 720, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR	TU Dresden, ZIH	34656	1029940
96	Konrad	Cray XC40, Intel Xeon E5-2695v2/E5-2680v3 12C 2.4/2.5GHz, Aries interconnect	HLRN at ZIB/Konrad Zuse-	44928	991525
114	Gottfried	Cray XC40, Intel Xeon E5-2695v2 12C 2.4GHz/E5-2680v3 12C 2.5GHz, Aries interconnect	HLRN at Universitaet	40320	829805
			Hannover / RRZN		
126	ForHLR II	Lenovo NeXtScalenx360M5, Xeon E5-2660v310C2.6GHz, Infiniband EDR/FDR	Karlsruher Institut für	22960	768336
			Technologie (KIT)		
145		iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	Max-Planck-Gesellschaft MPI/IPP	15840	709700
214	NEMO	Dalco H88 Cluster, Xeon E5-2630v4 10C 2.2GHz, Intel Omni-Path	Universitaet Freiburg	15120	525714
279	magnitUDE	NEC Cluster, Xeon E5-2650v4 12C 2.2GHz, Intel Omni-Path	University of Duisburg-Esser	13536	437705
327	HPC4	HP POD - Cluster Platform BL460c, Intel Xeon E5-2697v2 12C 2.7GHz, Infiniband FDR	Airbus	21120	400413
334		Cray XC40, Intel Xeon E5-2670v2 10C 2.5GHz/E5-2680v3 12C 2.5Ghz, Aries interconnect	Deutscher Wetterdienst	17648	390568
335		Cray XC40, Intel Xeon E5-2670v2 10C 2.5GHz/E5-2680v3 12C 2.5Ghz, Aries interconnect	Deutscher Wetterdienst	17648	390568
336		Cluster Platform 3000 BL460c Gen8, Intel Xeon E5-2697v2 12C 2.7GHz, Infiniband FDR	Aerospace Company (E)	21240	389507.6
356	CooLMUC 2	NeXtScale nx360M5, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR14	Leibniz Rechenzentrum	11200	366357
361	Ollie	Cray CS400, Xeon E5-2697v4 18C 2.3GHz, Omni-Path	Alfred Wegener Institute,	11232	364165
			Helmholtz Centre for Polar		
362	EOS	Cray CS400, Xeon E5-2698v3 16C 2.3GHz, Infiniband FDR	Max-Planck-Gesellschaft	12800	363951
			MPI/IPP		
413	BinAC GPU	MEGWARE MiriQuid, Xeon E5-2680v4 14C 2.4GHz, Infiniband FDR, NVIDIA Tesla K80	Universitaet Tuebingen	11184	334800
440		ASUS ESC4000 FDR/G2S, IntelXeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	GSI Helmholtz Center	10976	316700
463	Minerva	Clustervision MD30-RS0, Xeon E5-2630v3 8C 2.4GHz, Intel Omni-Path	Max-Planck-Gesellschaft	9504	302416
467	LOEWE-CSC	SuperServer 2022TG-GIBQRF, Opteron 6172 12C 2.1GHz, Infiniband QDR, ATI HD 5870	Universitaet Frankfurt	44928	299300
				-	
L					

Ĉ **Countries Share**

Sunway TaihuLight http://bit.ly/sunway-2016

- SW26010 processor
- Chinese design, fab, and ISA
- 1.45 GHz

- Node = 260 Cores (1 socket)
 - 4 core groups
 - 64 CPE, No cache, 64 KB scratchpad/CG
 - Each core of CPE independent w/own inst stream
 - 1 MPE w/32 KB L1 dcache & 256KB L2 cache
 - 32 GB memory total, 136.5 GB/s
 - ~3 Tflop/s, (22 flops/byte)
- Cabinet = 1024 nodes
 - 4 supernodes=32 boards(4 cards/b(2 node/c))
 - ~3.14 Pflop/s
- 40 Cabinets in system
 - 40,960 nodes total
 - 125 Pflop/s total peak
- <u>10,649,600 cores total</u>
- 1.31 PB of primary memory (DDR3)
- 93 Pflop/s HPL, 74% peak
- 0.32 Pflop/s HPCG, 0.3% peak
- 15.3 MW, water cooled
 - 6.07 Gflop/s per Watt
- 3 of the 6 finalists Gordon Bell Award@SC16
- 1.8B RMBs ~ \$280M, (building, hw, apps, sw, ...)

Apps Running on Sunway TaihuLight

Table 4	Summary of	of the	${\rm major}$	applications	on	the	Sunway	TaihuLight,	$\operatorname{compared}$	with	similar	applications	$^{\mathrm{on}}$	other
large-scale	systems													

Category	System	Application summary	Scale of run	Performance
Non-linear	Sunway TaihuLight	A fully-implicit nonhydrostatic dynamic for cloud-resolving atmospheric simulation	131072 MPEs and 8388608 CPEs	1.5 PFlops
solver	solver An implicit solver for comp Sequoia PDEs in highly heterogeneou in Earth's mantle [3]		1572864 cores	687 TFlops
Molecular	Sunway TaihuLight	Atomic simulation of silicon nanowires	131072 MPEs and 8388608 CPEs	14.7 PFlops
dynamics	Tianhe-1A	Molecular dynamics simulation of crystalline silicon [20]	7168 GPUs (3211264 CUDA cores)	1.87 PFlops
Phase-field	Sunway TaihuLight	Coarsening dynamics based on Cahn-Hilliard equation with degenerated mobility	131072 MPEs and 8388608 CPEs	39.678 PFlops
simulation	Tsubame 2.0	Dendritic solidification [6]	16000 CPU cores and 4000 GPUs (1792000 CUDA cores)	1.017 PFlops

hpcg-benchmark.org

HPCG Snapshot

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collectives.
 - Multi-scale execution of kernels via MG (truncated) V cycle.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).

HPCG with 80 Entries

Rank (HPL)	Site	Computer	Cores	Rmax	HPCG	HPCG / HPL	% of Peak
1 (2)	NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.86	0.580	1.7%	1.1%
2 (5)	RIKEN AICS	K computer, SPARC64 VIIIfx 2.0GHz, custom	705,024	10.51	0.554	5.3%	4.9%
3 (1)	NCSS / Wuxi	Sunway TaihuLight SW26010, Sunway	10,649,600	93.01	0.371	0.4%	0.3% <
4 (4)	DOE NNSA / LLNL	Sequoia - IBM BlueGene/Q + custom	1,572,864	17.17	0.330	1.9%	1.6%
5 (3)	DOE SC / ORNL	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, custom, NVIDIA K20x	560,640	17.59	0.322	1.8%	1.2%
6 (7)	DOE NNSA / LANL& SNL	Trinity - Cray XC40, Intel E5- 2698v3, + custom	301,056	8.10	0.182	2.3%	1.6%
7 (6)	DOE SC / ANL	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, + Custom	786,432	8.58	0.167	1.9%	1.7%
8 (11)	TOTAL	Pangea Intel Xeon E5-2670, Ifb FDR	218592	5.28	0.162	3.1%	2.4%
9 (15)	NASA / Mountain View	Pleiades - SGI ICE X, Intel E5- 2680, E5-2680V2, E5-2680V3 + Ifb	185,344	4.08	0.155	3.8%	3.1%
10 (9)	HLRS / U of Stuttgart	Hazel Hen - Cray XC40, Intel E5-2680v3, + custom	185,088	5.64	0.138	2.4%	1.9%

Bookends: Peak, HPL, and HPCG

Bookends: Peak, HPL, and HPCG

Peak Performance - Per Core

Floating point operations per cycle per core

- + Most of the recent computers have FMA (Fused multiple add): (i.e.
 x ← x + y*z in one cycle)
- + Intel Xeon earlier models and AMD Opteron have SSE2
 - + 2 flops/cycle DP & 4 flops/cycle SP
- + Intel Xeon Nehalem ('09) & Westmere ('10) have SSE4
 - + 4 flops/cycle DP & 8 flops/cycle SP
- + Intel Xeon Sandy Bridge ('11) & Ivy Bridge ('12) have AVX
 - + 8 flops/cycle DP & 16 flops/cycle SP
- + Intel Xeon Haswell ('13) & (Broadwell ('14)) AVX2
 - + 16 flops/cycle DP & 32 flops/cycle SP
 - + Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

- Intel Xeon Skylake (server) AVX 512

+ 32 flops/cycle DP & 64 flops/cycle SP

We

are here

(almost)

 $FLOPS = cores \times clock >$

FLOP

cvcle

CPU Access Latencies in Clock Cycles

40 Years Evolving SW and Algo Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time

Classical Analysis of Algorithms May Not be Valid

- Processors over provisioned for floating point arithmetic
- Data movement extremely expensive
- Operation count is not a good indicator of the time to solve a problem.
- Algorithms that do more ops may actually take less time.

3 Generations of software compared

Bottleneck in the Bidiagonalization The Standard Bidiagonal Reduction: xGEBRD Two Steps: Factor Panel & Update Tailing Matrix

- Too many Level 2 BLAS operations
- $4/3 n^3$ from GEMV and $4/3 n^3$ from C
- Performance limited to 2* performance
- →Memory bound algorithm.

Recent Work on 2-Stage Algorithm

*****Characteristics

- Stage 1:
 - Fully Level 3 BLAS
 - Dataflow Asynchronous execution
- Stage 2:
 - Level "BLAS-1.5"
 - Asynchronous execution
 - Cache friendly kernel (reduced communication)

Recent work on developing new 2-stage algorithm

More Flops, original did 8/3 n³ 25% More flops

Recent work on developing new 2-stage algorithm

if P_{gemm} is about 22x P_{gemv} and $120 \le n_b \le 240$.

25% More flops and 1.8 - 7 times faster

API for Batching BLAS Operations

- We are proposing, as a community standard, an API for Batched Basic Linear Algebra Operations
- The focus is on multiple independent BLAS operations
 - Think "small" matrices (n<500) that are operated on in a single routine.
- Goal to be more efficient and portable for multi/manycore & accelerator systems.
- We can show 2x speedup and 3x better energy efficiency.

Machine Learning

– Need of Batched and/or Tensor contraction routines in machine learning

e.g., Convolutional Neural Networks (CNNs) used in computer vision Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;] [collaboration with Tim Davis at al., Texas A&M University]

To capture main LA patterns needed in a numerical library for Batched LA

- LU, QR, or Cholesky on small diagonal matrices
- TRSMs, QRs, or LUs
 - TRSMs, TRMMs
- Updates (Schur complement) GEMMs, SYRKs, TRMMs

- Example matrix from Quantum chromodynamics
- Reordered and ready for sparse direct multifrontal solver
- Diagonal blocks can be handled in parallel through batched LU, QR, or Cholesky factorizations

MAGMA Batched Computations CPU

1. Non-batched computation

loop over the matrices one by one and compute either:

- One call for each matrix.
- Sequentially wasting all the other cores, and attaining very poor performance
- Or using multithread (note that for small matrices there is not enough work for all cores so expect low efficiency as well as threads contention can affect the performance)

MAGMA Batched Computations CPU

2. Batched computation

loop over the matrices and assign a matrix to each core working on it sequentially and independently

Since matrices are very small, all the n_cores matrices will fit into L2 cache thus we do not increase L2 cache misses while performing in parallel n_cores computations reaching the best of each core

Batched Level 3 BLAS DGEMM Example

DGEMM (NN), batch_count = 500, 16-core Intel Xeon E5-2670 CPU

Synchronization (in LAPACK LU)

PLASMA LU Factorization

GEMN

GEMM

GEMA

×GEMM

xGEMN

- Added with OpenMP 3.0 (2009)
- Allows parallelization of irregular problems
- OpenMP 4.0 (2013) Tasks can have dependencies
 - DAGs

Tiled Cholesky Decomposition

}

. . .

Ĉ

Dataflow Based Design

Objectives

- > High utilization of each core
- Scaling to large number of cores
- Synchronization reducing algorithms

Methodology

- Dynamic DAG scheduling
- Explicit parallelism
- Implicit communication
- Fine granularity / block data layout

SArbitrary DAG with dynamic scheduling

Mixed Precision Methods

- Mixed precision, use the lowest precision required to achieve a given accuracy outcome
 - Improves runtime, reduce power consumption, lower data movement
 - Reformulate to find correction to solution, rather than solution; Δx rather than x.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
$$x_{i+1} - x_i = -\frac{f(x_i)}{f'(x_i)} 40$$

Idea Goes Something Like This...

- Exploit 32 bit floating point as much as possible.
 - Especially for the bulk of the computation
- Correct or update the solution with selective use of 64 bit floating point to provide a refined results
- Intuitively:
 - Compute a 32 bit result,
 - Calculate a correction to 32 bit result using selected higher precision and,
 - Perform the update of the 32 bit results with the correction using high precision.

Mixed-Precision Iterative Refinement

Iterative refinement for dense systems, Ax = b, can work this way.

$L \cup = lu(A)$	O (n ³)
x = L (U b)	O (<i>n</i> ²)
r = b - Ax	O (<i>n</i> ²)
WHILE r not small enough	
z = L (U r)	O (<i>n</i> ²)
$\mathbf{x} = \mathbf{x} + \mathbf{z}$	O (n ¹)
r = b - Ax	O (<i>n</i> ²)
FND	

• Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.

Mixed-Precision Iterative Refinement

Iterative refinement for dense systems, Ax = b, can work this ۲ way.

L U = Iu(A)	SINGLE	O (n ³)
$x = L \setminus (U \setminus b)$	SINGLE	O (n ²)
r = b - Ax	DOUBLE	O (n ²)
WHILE r not small enough		
$z = L \setminus (U \setminus r)$	SINGLE	O (n ²)
$\mathbf{x} = \mathbf{x} + \mathbf{z}$	DOUBLE	O (n ¹)
r = b - Ax	DOUBLE	O (n ²)

- Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
- It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
 - Requires extra storage, total is 1.5 times normal;
 - O(n³) work is done in lower precision

 - O(n²) work is done in high precision
 Problems if the matrix is ill-conditioned in sp; O(10⁸)

Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

Avoiding Synchronization

"Responsibly Reckless" Algorithms

- Try fast algorithm (unstable algorithm) that might fail (but rarely)
- Check for instability
- If needed, recompute with stable algorithm

LU decomposition (Gaussian Elimination) for the solution of Ax = b

for k = 1 to n do $a_{k+1:n,k} \leftarrow \frac{a_{k+1:n,k}}{a_{kk}}$ $a_{k+1:n,k+1:n} \leftarrow a_{k+1:n,k+1:n} - a_{k+1:n,k} \times a_{k,k+1:n}$ end for

- Stability issue: a_{kk} may be small or zero ⇒ large element growth ⇒ elements of normal size lost in summation.
- Partial pivoting (GEPP): swap rows so that each a_{kk} is large. row k is exchanged with row p such that $|a_{pk}| = \max_{j \ge k} |a_{jk}|$ Eventually, PA = LU (P permutation matrix).

Software and Algorithm Must Keep Pace with the Changes in Hardware

- Classical analysis of algorithms may not be valid,
 - # of floating point ops ≠ computation time.
- Algorithms and software must take advantage by reducing data movement.
 - Need latency tolerance in our algorithms
- Communication and synchronization reducing algorithms and software are critica
 - As parallelism grows
- Many existing algorithms can't fully exploit the features of modern architecture
 Time to us think
- Time to rethink

- Major Challenges are ahead for extreme computing
 - Parallelism O(10⁹)
 - Programming issues
 - Hybrid
 - Peak and HPL may be very misleading
 - No where near close to peak for most apps
 - Fault Tolerance
 - With 10M cores things will fail.
 - Power
 - 50 Gflops/w (today at 6 Gflops/w)
- We will need completely new approaches and technologies to reach the Exascale level

Critical Issues at Peta & Exascale for Algorithm and Software Design

- Synchronization-reducing algorithms
 - Break Fork-Join model
- Communication-reducing algorithms
 - Use methods which have lower bound on communication
- Mixed precision methods
 - 2x speed of ops and 2x speed for data movement
- Autotuning
 - Today's machines are too complicated, build "smarts" into software to adapt to the hardware
- Fault resilient algorithms
 - Implement algorithms that can recover from failures/bit flips
- Reproducibility of results
 - Today we can't guarantee this. We understand the issues, but some of our "colleagues" have a hard time with this.

Collaborators and Support

MAGMA team

http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville Lawrence Livermore National Laboratory, Livermore, CA University of California, Berkeley University of Colorado, Denver INRIA, France (StarPU team) KAUST, Saudi Arabia

NVIDIA.

a, CA

(intel)